Search results for "Cell potency"

showing 6 items of 6 documents

Systems Biology and Stem Cell Pluripotency: Revisiting the Discovery of Induced Pluripotent Stem Cell

2016

Recent breakthroughs in stem cell biology have accelerated research in the area of regenerative medicine. Over the past years, it has become possible to derive patient-specific stem cells which can be used to generate different cell populations for potential cell therapy. Systems biological modeling of stem cell pluripotency and differentiation have largely been based on prior knowledge of signaling pathways, gene regulatory networks, and epigenetic factors. However, there is a great need to extend the complexity of the modeling and to integrate different types of data, which would further improve systems biology and its uses in the field. In this chapter, we first give a general background…

Cell therapyCellular differentiationSystems biologyComputational biologyBiologyStem cellInduced pluripotent stem cellCell potencyEmbryonic stem cellRegenerative medicine
researchProduct

Identification and expansion of human osteosarcoma-cancer-stem cells by long-term 3-aminobenzamide treatment

2009

A novel cancer stem-like cell line (3AB-OS), expressing a number of pluripotent stem cell markers, was irreversibly selected from human osteosarcoma MG-63 cells by long-term treatment (100 days) with 3-aminobenzamide (3AB). 3AB-OS cells are a heterogeneous and stable cell population composed by three types of fibroblastoid cells, spindle-shaped, polygonal-shaped, and rounded-shaped. With respect to MG-63 cells, 3AB-OS cells are extremely smaller, possess a much greater capacity to form spheres, a stronger self-renewal ability and much higher levels of cell cycle markers which account for G1-S/G2-M phases progression. Differently from MG-63 cells, 3AB-OS cells can be reseeded unlimitedly wit…

AdultHomeobox protein NANOGAdolescentPhysiologyCellular differentiationClinical BiochemistryApoptosisBiologyStem cell markerYoung Adultcancer stemm cells osteosarcoma PARP inhibitorsCancer stem cellCell Line TumorSettore BIO/10 - BiochimicaHumansRhodamine 123Enzyme InhibitorsProgenitor cellChildInduced pluripotent stem cellCell ShapeCell potencyFluorescent DyesOsteosarcomaCell DifferentiationCell BiologyCalcium Channel BlockersDrug Resistance MultipleGene Expression Regulation NeoplasticVerapamilBenzamidesImmunologyNeoplastic Stem CellsCancer researchATP-Binding Cassette TransportersBenzimidazolesStem cellBiomarkersJournal of Cellular Physiology
researchProduct

Defining the genomic signature of totipotency and pluripotency during early human development.

2013

The genetic mechanisms governing human pre-implantation embryo development and the in vitro counterparts, human embryonic stem cells (hESCs), still remain incomplete. Previous global genome studies demonstrated that totipotent blastomeres from day-3 human embryos and pluripotent inner cell masses (ICMs) from blastocysts, display unique and differing transcriptomes. Nevertheless, comparative gene expression analysis has revealed that no significant differences exist between hESCs derived from blastomeres versus those obtained from ICMs, suggesting that pluripotent hESCs involve a new developmental progression. To understand early human stages evolution, we developed an undifferentiation netw…

EmbryologyBlastomeresMicroarraysCellular differentiationGene ExpressionCell Fate DeterminationMolecular Cell BiologyGene Regulatory NetworksInduced pluripotent stem cellreproductive and urinary physiologyGeneticsMultidisciplinarySystems BiologyStem CellsQTotipotentRGenomic signatureCell DifferentiationGenomicsCell biologyFunctional GenomicsBlastocyst Inner Cell MassBlastocyst Inner Cell Massembryonic structuresMedicineResearch ArticlePluripotent Stem CellsSystems biologyCell PotencyScienceEmbryonic DevelopmentBiologyMolecular GeneticsGeneticsHumansGene NetworksBiologyEmbryonic Stem CellsGenome HumanGene Expression ProfilingBio-OntologiesComputational BiologyMolecular Sequence AnnotationComparative GenomicsMolecular DevelopmentEmbryonic stem cellSignalingSignaling NetworksGene expression profilingGenome Expression AnalysisTotipotent Stem CellsDevelopmental BiologyPLoS ONE
researchProduct

A Xenogeneic-Free Protocol for Isolation and Expansion of Human Adipose Stem Cells for Clinical Uses

2013

Human adipose stem cells (hASCs) play a crucial role in the fields of regenerative medicine and tissue engineering for different reasons: the abundance of adipose tissue, their easy harvesting, the ability to multipotent differentiation and the fact that they do not trigger allogeneic blood response or secrete cytokines that act as immunosuppressants. The vast majority of protocols use animal origin reagents, with the underlying risk of transmitting infections by non-human pathogens. We have designed a protocol to isolate and maintain the properties of hASCs avoiding xenogeneic reagents. These changes not only preserve hASCs morphology, but also increase cell proliferation and maintain thei…

Cèl·lules mare neuralsCellular differentiationCell- and Tissue-Based TherapyAdipose tissueCell SeparationStem cell markerRegenerative MedicineRegenerative medicine0302 clinical medicineTissue engineeringMolecular Cell BiologyAdipocytesNeurociènciesGene Regulatory Networks0303 health sciencesMultidisciplinaryStem CellsQRGene Expression Regulation DevelopmentalCell Differentiation3. Good healthCell biologyAdult Stem Cells317 Pharmacy030220 oncology & carcinogenesisMedicineStem cellCellular TypesMetabolic Networks and PathwaysResearch ArticleBiotechnologyAdultAdolescentClinical Research DesignScienceCell PotencyPrimary Cell CultureBiologyCell Growth03 medical and health sciencesYoung AdultAnimalsHumansBiology030304 developmental biologyCell ProliferationTissue EngineeringGene Expression ProfilingMesenchymal stem cellCell cultureImmunologyBiomarkersDevelopmental BiologyPLoS ONE
researchProduct

Multipotent adult germline stem cells and embryonic stem cells have similar microRNA profiles.

2008

Spermatogonial stem cells (SSCs) isolated from the adult mouse testis and cultured have been shown to respond to culture conditions and become pluripotent, so called multipotent adult germline stem cells (maGSCs). microRNAs (miRNAs) belonging to the 290 and 302 miRNA clusters have been previously classified as embryonic stem cell (ESC) specific. Here, we show that these miRNAs generally characterize pluripotent cells. They are expressed not only in ESCs but also in maGSCs as well as in the F9 embryonic carcinoma cell (ECC) line. In addition, we tested the time-dependent influence of different factors that promote loss of pluripotency on levels of these miRNAs in all three pluripotent cell t…

KOSRPluripotent Stem CellsEmbryologyCellular differentiationMice Inbred StrainsMice TransgenicEmbryoid bodyBiologyCell Line03 medical and health sciencesMice0302 clinical medicineCell Line TumorGeneticsAnimalsRNA MessengerInduced pluripotent stem cellMolecular BiologyCell potencyEmbryonic Stem Cells030304 developmental biologyGenetics0303 health sciencesReverse Transcriptase Polymerase Chain ReactionGene Expression ProfilingStem CellsAge FactorsObstetrics and GynecologyCell BiologyEmbryonic stem cellCell biologyMice Inbred C57BLAdult Stem CellsMicroRNAsGerm CellsReproductive Medicine030220 oncology & carcinogenesisStem cellOctamer Transcription Factor-3Developmental BiologyAdult stem cellMolecular human reproduction
researchProduct

Mitochondrial Dynamics: In Cell Reprogramming as It Is in Cancer

2017

Somatic cells can be reprogrammed into a pluripotent cellular state similar to that of embryonic stem cells. Given the significant physiological differences between the somatic and pluripotent cells, cell reprogramming is associated with a profound reorganization of the somatic phenotype at all levels. The remodeling of mitochondrial morphology is one of these dramatic changes that somatic cells have to undertake during cell reprogramming. Somatic cells transform their tubular and interconnected mitochondrial network to the fragmented and isolated organelles found in pluripotent stem cells early during cell reprogramming. Accordingly, mitochondrial fission, the process whereby the mitochond…

0301 basic medicinelcsh:Internal medicineInduced stem cellsSomatic cellReview ArticleCell BiologyBiologyEmbryonic stem cellCell biology03 medical and health sciences030104 developmental biologymitochondrial fusionMitochondrial fissionlcsh:RC31-1245Induced pluripotent stem cellMolecular BiologyCell potencyReprogrammingStem Cells International
researchProduct